April 27, 2022 6:30 PM – 8:00PM Virtual Meeting

register at https://events.vtools.ieee.org/m/311981



Solid-state drives (SSDs) are everywhere! Flash-based SSDs have established themselves as a higher-performance alternative to hard disk drives in cloud and mobile environments. SSDs are widely used as a form of storage in mobile devices, laptops, digital cameras, and cloud servers. Hence, improving the performance of SSDs impacts the overall computing system and the experience of millions of end-users. SSDs deliver significantly higher speeds and are more reliable than HDDs, however, they still remain a performance bottleneck of computing systems. SSDs are relatively reliable; however, they still fail, which can result in data loss or system unavailability. Datacenter operators are interested in predicting future drive failures to administer drive replacement, data migration, and drive acquisition strategies. The talk describes my research addressing the challenges of improving the reliability and response time of flash-based storage systems using machine learning.

To improve reliability, we propose a machine learning based approach for automatically predicting SSD failures. We analyzed telemetric data collected from over 30,000 drives running live applications in data centers over a span of six years, to find the most critical reasons for SSD failures. We introduce an approach for automatically predicting future SSD failures in data centers which enable interpretability of the model’s predictions. To improve response time, we propose a neural network based approach to improve prefetching in SSDs. Prefetching is a technique to speed-up fetch operations by predicting future block accesses and preloading them into the main memory ahead of time. This research identifies the challenges of prefetching in SSDs and explains why prior approaches fail to achieve high accuracy and presents a deep neural network (DNN) based prefetching approach that significantly outperforms the state-of-the-art. I will conclude my talk with research challenges that I plan to address in the future.